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Development of Continuous and Discrete Approaches for Aerodynamic Sensitivity

Analysis

Objectives:

The main objectives of the present research were as follows.

(a) Comparison of continuous and discrete semi-analytical design sensitivity techniques for

multidisciplinary aircraft optimization problems using comprehensive analysis procedures.

(b) Validation of the two techniques using wing design optimization problems in terms of CPU

efficiency and overall nature of the optimum solution.

A comparative study of discrete and continuous semi-analytical sensitivity analysis

techniques for evaluating aerodynamic sensitivities in optimization procedures involving CFD

solvers for accurate and detailed flow solutions, was proposed. Although there is extensive

literature on the discrete and continuous approaches for calculating aerodynamic sensitivities, a

study of the relative efficiencies of the approaches has not been performed. This study is crucial in

selecting an appropriate sensitivity analysis technique for large scale, multidisciplinary design

optimization problems using comprehensive analysis procedures. The study will compare the

accuracy and computational efficiency of the two techniques using representative model

optimization problems. The nature of the optimum solutions and the computational time (CPU

hours) required for arriving at optimum designs are also of interest.

The purpose of the present research is to extend the ongoing effort on semi-analytical

sensitivity analysis techniques by performing this important comparative study of the two

techniques. The proposed study will compare the accuracy and computational efficiency of the two

techniques using representative model optimization problems. The nature of the optimum solutions

and the CPU time required for convergence will also be of interest. Finally, parallelization of the

developed sensitivity analysis procedures is proposed to improve the computational efficiency and

the adaptability to a variety of CFD solvers.

The designs obtained from optimization procedures strongly depend on the accuracy of the

analysis procedures that are coupled. An accurate solution of the flow field necessitates the use of

accurate Computational Fluid Dynamics (CFD) techniques. Although accurate detailed analyses of

many complex flow fields associated with practical engineering systems are now possible,

viscous-compressible flow simulations of aircraft configurations can require several CPU hours

per steady-state solution. Therefore, the use of such comprehensive procedures for design

optimization can be prohibitively expensive when used within a gradient-based optimization

technique. Sensitivity analysis, in which the derivative of a system performance function (e.g., the



drag-to-lift ratio of an aircraft wing) with respect to a design variable (e.g., a parameter associated

with the wing planform) is calculated, is an essential ingredient in most design optimization

procedures. Semi-analytical sensitivity analysis techniques are slowly replacing the traditional

finite difference approach because of their efficiency and accuracy. Two popular techniques are the

direct differentiation approach and the adjoint variable approach. In both the techniques, the

actual governing equations are differentiated with respect to the design variables using chain rule.

The direct differentiation approach yields a large system of equations involving the desired

sensitivities which can be solved directly. In the adjoint variable approach, adjoint variables are

obtained as the solution to an adjoint problem. The adjoint variables are then used to calculate the

sensitivities. These two techniques are equivalent and yield identical results for the sensitivities. If

the governing equations are differentiated prior to their discretization, then the semi-analytical

approach is categorized as the continuous sensitivity approach. In this approach, the sensitivities

are calculated using a numerical algorithm similar to the one used for obtaining the flow solution.

Therefore, the continuous sensitivity approach needs to be modified, depending upon the

governing equations that are differentiated. In the discrete sensitivity approach, the discretized

governing algebraic equations are differentiated. Though there is a need for solving a large system

of equations here, this procedure can easily be adapted to different analysis procedures. A brief

description of the discrete sensitivity analysis is given in Appendix A. The semi-analytical

sensitivity analysis techniques are widely used in structural sensitivity calculations and, more

recently, have been used for calculating aerodynamic sensitivities.
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Milestones:

The major milestones associated with the current research are as follows.

1) Develop an efficient continuous sensitivity analysis procedure

2) Implement the procedure in the appropriate CFD code (UPS3D)

3) Compare the results with discrete sensitivity analysis approach in a relevant problem

4) Modify the procedure to be compatible with parallel processing codes

Research Accomplished (Year-l)

A continuous sensitivity analysis procedure has been completed already (milestone (1)). A

reference configuration based approach has been followed to develop this continuous sensitivity

analysis procedure. Implementation of the procedure in the UPS3D code (milestone (2)) is

underway. This part of the research effort will be completed in about a month (February '96).

The strategy is to utilize most of the computational algorithms already existing in the code by

configuring the governing equations for the sensitivities similar to those for the flow field. This

minimizes development cost, computational resources required in a realistic optimization and

makes the procedure more portable to other similar CFD codes. Effort is also underway to carry

out milestone (3) in a rigorous manner. This might require minor modifications to the procedure to

make it comparable in structure to the discrete sensitivity analysis procedure (already developed

and in use for sonic boom minimization related problems) so that a true comparison of the two

procedures can be carried out. The continuous sensitivity analysis procedure that has been

developed is described below.

Continuous sensitivity analysis:

In the continuous sensitivity approach, the flow variables sensitivities are calculated by

directly differentiating the governing partial differential equations. This results in a set of partial

differential equations for the sensitivities of the flow variables which are solved using numerical

procedures similar to those used in solving the flow equations. In the present work, a continuous

sensitivity analysis approach based on the reference configuration has been developed for

evaluating the flow variables sensitivities in a multiobjective optimization procedure for high speed

flows. Brief description of this development is given below.

The governing equation in integral form is:

fudv+ =o
at ,as

For steady flow, equation (1) becomes:

_s (_.i_)dS = 0 (2)
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where

with

H = (E i - Ev)i + (Fi - F)j + (G i - Gv)k

E i = pu,pu +p,puv,puw,(E t+p)u

[Fi = pv, puv, pv +p,pvw,(E t+p)v

G. [pw,puw,pvw,pw 2 ITI = +p,(E t +p)wj

E v =[O,'rxx,'rxy,'rxz,U'Cxx+V'rxy+W'Cxz-qx] T

F =[O,'Cxy,'Cyy,_:yz,UZxx +V'rxy+W'rxz-qy] T

°v--[°,_xz,_yz,_zz,_xx+V_xy+W_xz-qz]_
1

(3)

The initial configuration is used as the reference configuration. The parameters and variables

associated with the reference configuration are identified by an overbar in this report. When the

design variables change during optimization, a new physical configuration results. Assuming q is

design variable vector and _ is the design variable vector associated with the reference

configuration, the transformation equation from the reference configuration to current physical

configuration is represented by

X(Xl, x2, x3) = f(q, q, 21, x2, x'3) (4)

where the subscripts 1-3 represent the coordinate directions for the given system.

The continuous sensitivities can be obtained by differentiating the governing equation (Eqn.

2) using reference configuration as
d --

d0i _s(_" _)dS = 0 (5)

Changing the basis of differentiation from the physical configuration to reference configuration,

Eqn. (5) can be written as

_: =fF__+_._b,=o _a_(H._)S_dS j_[ dO, dO,J

where
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(6)

Jr = det

-ax,/ &,/ &,/

Ox,/

(7)

In the above, n_ (i=1,2,3) are the outward normal components of the reference surface F.

differentiation of equation (5a) gives

Further

where Q

and dJ[- Assuming
de,

(Sc)QH°3Q')J_+ .ridS= 0 (8)

is the flow variables vector. From Equations (4), (6) and (7), we can solve for J/-

3H o_Q')jr j + H dJ-_r

equation (8) becomes

f_ (9 • fi)d_ = o (8a)

Equation (8a) can now be used in conjunction with the computational algorithm of the CFD code to

compute the flow variable sensitivities 8Q*

The sensitivities of the performance coefficients of the aircraft to the relevant geometric

parameters are calculated as described below. In general, a performance coefficient, Cj, depends

on the steady-state flow variables, Q*, the vector of computational grid coordinates, X, and,

sometimes, explicitly on the vector of independent design variables, q. Mathematically this can be

stated as,

Cj = Cj(Q*(q), X(q), q) (9)

The derivative of Cj with respect to the i th design variable, 0i, is expressed as follows.

dCj_[aCj ITIoQ*t +[OcjtTIoxI aCj (10)
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t3C!/ /3CJ/and0Q are easily calculated knowing the explicit
In equation (10), the terms |--Q-Zj, IOxJ _¢i

dependence of Cj onQ*,Xand_ i. Similarly, the grid sensitivities, {O_i} , can be evaluated since

the explicit dependence of the physical grid on the design variables (geometric parameters defining

the vehicle configuration) is known. Then equation (10) can be solved for the sensitivities of the

performance coefficients thus completing the sensitivity analysis. Appendix A describes the

optimization problem, the associated analyses and the geometric configuration of the high speed

problem addressed.

Grid Sensitivities:

The term/0x/, which appears in Eqn. 10, represents the grid sensitivity vector. The vector

X comprises a set of xyz values corresponding to each point _1] t in the computational grid. In

general, a three dimensional hyperbolic grid generation code generates a two-dimensional grid at

various stations along the longitudinal direction by solving the following equations.

0y0y 0z 0z -0 (11)
anat anat

OyOz OzOy _ F(n,_) (12)

anat aqa t
In Eqn. 12, F(TI,t) is a known function approximating the Jacobian of transformation between the

xyz and the _nt coordinate systems. Equations 11 and 12 are discretized and solved numerically

to obtain the grid vector X. The grid sensitivity vector, tOX/, can be obtained by directly
1OOi/

differentiating Eqns. 11 and 12 with respect to 0i, as follows.

O dy ody o dz O dz

by d0i by dt_i OZ d0i OZ d0i--+ + + -0 (13)

an at at an an at at an
0 -dz 0 dy 0 dy 0d z

0y d0i +--0z d0i 0Z d0i 0y d0i___dF (14)

0rl 0t 0t 011 On 04 0t 0rl dOi

Equations 13 and 14, represent a system of equations which can be solved readily to yield the grid

  uatio s o t oracontinuousora
tO0i/

sensitivity approach.



Proposed Research (Year-2)

The following objectives, derived on the basis of milestones 3 & 4, are proposed for the

second year of this research grant. Comparison of the continuous sensitivity analysis with discrete

analysis and parallelization of the sensitivity analysis procedure are the two tasks proposed.

1) Validation & Application of Continuous Sensitivity Analysis Procedure:

The flow variable sensitivity procedure is to be used in conjunction with a multiobjective

optimization procedure suitable for high speed applications. Specifically, the integration of sonic

boom and aerodynamic performance criteria in the optimization procedure with the aim of

minimizing sonic boom while improving the vehicle's aerodynamic performance will be addressed.

The motivation for this choice of the flow problem originates from the fact that such an

optimization effort using discrete sensitivity analysis is already underway. Thus the proposed

application will serve as a comparison study between the two types of procedures, which is a

major objective of the present effort. A brief description of the optimization problem, the

associated procedures, the procedure used for evaluating the sonic boom signature and a

description of the aerospace vehicle configurations used in the present research effort are given in

Appendix A.

2) Parallelization of the Sensitivity Analysis Procedure:

The optimization procedure will need to be efficient from a computational perspective to be

of use in practical applications. This is especially important in the present case where a

comprehensive CFD solver is coupled with the optimizer. One of the areas to be addressed from

the computational efficiency point of view is the sensitivity analysis part of the optimization

procedure. For a relatively large number of design variables, the sensitivity analysis may be

computationally intensive even in the case of semi-analytical sensitivity analysis (which is superior

to finite difference based analysis in terms of computational efficiency). Parallel computing is an

area which may be of use in this respect. There has been a lot of interest in parallel computing in

recent years. The primary attention has been focused on the CFD solvers which are in use to

address flow solutions of large scale practical problems. It has been demonstrated that

parallelization allows the distribution of the computational effort over several processors and,

hence, can save turn around time of the computational solution codes.

One of the main aims of the proposed work is the parallelization of the sensitivity analysis

leading to a more efficient optimization procedure. The sensitivity analysis may be based on finite

difference or semi-analytica! techniques. Finite difference design sensitivity calculations show

coarse grained parallelism and can be easily parallelized since, in addition to the initial flow field

solution, one flow field evaluation per design variable must be evaluated in each optimization



cycle. On the other hand, the semi-analytical sensitivity techniques may have fine grained

parallelism which requires careful restructuring of the techniques for improved efficiency.

Therefore, a study of the parallelization issues associated with the continuous and discrete

sensitivity analysis approaches is proposed. This study will mainly address parallelization of the

solution techniques for large linear systems of equations which commonly arise in CFD and semi-

analytical sensitivity calculations. Established parallelization techniques/algorithms as well as

techniques such as pre-conditioned conjugate gradient methods will be investigated for efficient

parallelization of the sensitivity analysis related equation. One of the key aspects of this effort may

be the analysis of parallelization issued associated with the CFD solver itself and importing the

relevant ideas for parallelizing the sensitivity analysis. Possible implementation of the semi-

analytical techniques in parallel processing environments will be one of the main aims of the

proposed work. The following briefly outlines the basic strategy being considered for addressing

the parallelization issues associated with the sensitivity analysis procedure.

a) The biggest impact of parallelization will be in the sensitivities calculations. As far as UPS3D,

since the solution procedure is that of space marching, one of the ideas is to lag the sensitivities

calculation by one plane (i.e. flow solution in n th plane goes on while the sensitivities are

calculated in the (n-1)th plane using the already solved flow variables (from previous step).

For example, the flow field is represented by the set of equations in the form

Aq_ = R

where q_ is the flow variables vector. Similarly, the corresponding equations for the

sensitivities are represented by

B0 i = R i

where 0 i is the sensitivity vector corresponding to the design variable _Pi The proposed effort

in this case corresponds to solving the above two sets of equation in parallel with the latter

equation(s) lagged by one plane from the former. This would enable time savings of the order

of what it takes to compute either the flow or the sensitivities (whichever is faster). One of the

foreseeable penalties is that an extra plane of flow variables will have to be stored.

b) Since the individual sensitivities are independent of each other (represented by the second set of

equations above), they can all be solved in parallel. Since the equations to be solved all have

the same structure, the same numerical algorithm (with different coefficients) can be used. The

structure of the equation set representing the flow field is similar to the sensitivity equations

and so the numerical algorithm used for evaluating the flow field will be useful here. The

overall savings from the above two parts ((a) & (b)) could be 25% over and above the savings

associated with using the analytical sensitivities instead of finite difference sensitivities.



c) Parallelizing UPS3D:- It is proposed to address the subroutines that directly affect the

sensitivities calculations (semi-analytical & continuous) first. Large scale matrix operations

benefit tremendously from parallel computational algorithms. The UPS3D code includes many

subroutines which involve such matrix manipulations ( e.g.. THOMAS, BMAT, BTRI etc.).

These may become computationally more efficient if they are parallelized. We will work

closely with the NASA Ames personnel in this regard.

Deliverable:

1) A comparative study of discrete and continuous semi-analytical sensitivity analysis techniques

will be done. The accuracy and computational efficiency of the two techniques will be

compared using representative model optimization problems. The nature of the optimum

solutions and the computational efficiency will also be analyzed.

2) Parallelization of the sensitivity analysis procedure will be initiated. Initially, the modules that

are used to evaluate the sensitivities will be modified to be used in a parallel mode along with

the flow field solution module. Subsequently, the issue of parallelizing individual subroutines

that directly affect the sensitivity analysis will be addressed.
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Appendix A

In order to validate the developed sensitivity techniques, it is proposed to study their

performance in three-dimensional, single-point optimization problems with different sets of

objective functions and constraints such as drag coefficient, CD, lift coefficient, CL, CL/CD ratio,

and wing weight, W. Problems from high subsonic and transonic flight regimes will be

considered in the validation study.

Optimization Problem:

The optimization problem involves multiple objectives and constraints and can be stated as

follows.

Minimize

Apmax and CD/CL

subject to the constraints

CLmin -< C L _< CLmax

_min < _ < _max

where Apmax is the first peak in the overpressure signal at a specified distance from the aircraft,

CD/CL is the drag to lift ratio, • is the design variable vector and the subscripts "min" and "max"

denote lower and upper bounds respectively. Upper and lower bounds are imposed on the design

variables during the optimization to prevent unrealistic results. All the design variables that will

allow a comprehensive investigation of their individual effects on the overall performance of the

aircraft, must be included in the optimization problem.

Since the above optimization problem involves multiple design objectives (two in the present

case), traditional optimization techniques which typically consider a single objective function,

cannot be used. In the present work, a multiobjective function formulation, based on the

Kreisselmeier-Steinhauser (K-S) function approach [1], has been used. This approach is

described next.

Kreisselmeier-Steinhauser (K-S) Multiobjective Formulation

The K-S function approach helps combine the multiple objective functions and the design

constraints into a single composite envelope function which is then minimized using unconstrained

techniques. The first step in forming the composite objective function involves the transformation

of the original objective functions into reduced objective functions [1]. These reduced objective

functions assume the form,

Fk(_) = 1.0- Fk(_) _gmax < 0 k= 1..... NOBJ (A-l)
Fko

where Fko represents the value of the original objective function Fk, calculated at the beginning of

each optimization cycle. NOBJ denotes the total number of objective functions in the original
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optimization problem. The quantity gmax is the value of the largest constraint of the original

optimization problem and is held constant during each cycle. Since the reduced objective functions

assume the form of constraints, a new constraint vector fro(q)) (m = 1, 2 ..... NCON+NOBJ,

where NCON is the total number of constraints in the original optimization problem) is introduced.

The constraint vector includes the original constraints and the constraints introduced by the reduced

objective functions (Eq. A-l). The new objective function to be minimized is then defined using

the K-S function as follows.
M

FKS(_) = fmax + lloge _Z eg(fm(q_)-fmax) (A-2)
P

m=l

where fmax is the largest constraint corresponding to the new constraint vector fro(q)) (in general

not equal to gmax)- When the original constraints are satisfied during optimization, the constraints

due to the reduced objective functions are violated. Initially, in an infeasible design space, where

the original constraints are violated, the constraints due to the reduced objective functions (Eqn. A-

1) are satisfied (i.e. gmax is negative). The optimizer attempts to satisfy these violated constraints

thus optimizing the original objective functions (Fk). The multiplier 9, which is analogous to the

draw-down factor of penalty function formulation, controls the distance from the surface of the K-

S envelope to the surface of the maximum constraint function (Fig. 1). When O is large, the K-S

function will closely follow the surface of the largest constraint function and when 9 is small, the

K-S function will include contributions from all violated constraints with equal weight.

The new unconstrained optimization problem can be solved by using a variety of techniques.

In the present work, it is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

[2]. This algorithm approximates the inverse of the Hessian of the composite objective function

using a rank-two update and guarantees both symmetry and positive definiteness of the updated

inverse Hessian matrix.

Approximation Technique

During the optimization, several evaluations of the objective functions and the constraints need

to be done in each optimization cycle. The use of exact analysis to evaluate them at each iteration

during an optimization cycle is computationally expensive. Therefore, an approximation technique

known as the two-point exponential approximation [3], is used within the optimizer for

approximating the objective functions and the constraints. This technique utilizes the gradient of

the function with respect to design variables from the current and previous design cycles and is

formulated as follows.

F(O) = F({I)j) + - 1.0 ({I}1) (A-3)
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A

where F(_) is the approximation of the function F(_) in the neighborhood of the current design

variable vector, _1. The quantity qbn is the n th design variable from the design variable vector ¢_.
A

NDV is the total number of design variables. The approximate values for the constraints, gj(¢9,

are similarly calculated. The exponent Pn is defined as

+ 1.0 (A-4)

Pn= logel 4)on l

La)ln j

where _1 refers to the design variable vector from the current cycle and q)0 denotes the design

variable vector from the previous cycle. Equation A-1 indicates that in the limiting case of Pn = 1,

the expansion is identical to the traditional first order Taylor series and when Pn = -1, the two-point

exponential approximation reduces to the reciprocal expansion form. Therefore, the exponent (Pn)

can be interpreted as a "goodness of fit" parameter which explicitly determines the trade-off

between traditional and reciprocal Taylor series based expansions. Pn is chosen to be within the

interval, -1 < Pn < 1 thus resulting in a hybrid approximation technique.

Sonic Boom Analysis:

The CFD based analysis procedure for evaluating sonic boom is described in this section. For

isentropic flow past smooth axisymmetric bodies, the pressure disturbances (sonic boom) at large

distances from the aircraft can be evaluated by using the Whitham F-function [4], which is based

on the Abel integral of the equivalent area distribution of the aircraft. Lighthill [5] developed an

alternate formulation of the F-function which was shown to be suitable for sonic boom prediction

of smooth and non smooth projectile shapes. Walkden extended Whitham's theory [6] for

application to wing-body configurations. The asymptotic form of the equations used in developing

the sonic boom overpressure signature (Ap/p,_), is as follows.

Ap _ 7M2F(y )/_ (A-5)
poo

x = y+[3do-K_-_-oF(Y) (1-6)

[3 = (Mo_ 2- 1) 0.5 (1-7)

K = (T + 1)Moo4/[[3"(2_) 05] (A-8)

Ap = (Plocal - poo), (A-9)

where F(y) is the Whitham F-function, 7 = 1.4 for air and Moo is the free stream Mach number.

The equation, y(x, do) = constant, is a characteristic curve, x is the streamwise distance and do is a

specified distance from the flight axis. Since the above mentioned models are based on linearized

theory, they fail to agree with wind-tunnel data in highly nonlinear flows such as the flow at angle-
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of-attack at high Mach numbers (M_ > 2). Hicks and Mendoza [7] have developed a technique to

extrapolate the pressure signature at do to a distance dl (dl > do). First, a pressure signature at

distance do, where the flow field is assumed to be locally axisymmetric, is directly measured in the

wind-tunnel and the value of the F-function (at do) is evaluated. Since the pressure signal

propagates at the local speed of sound and each point of the signal advances according to its

amplitude, the signal is distorted as it propagates away from the aircraft and the F-function

becomes multivalued. The new F-function at dl is obtained by placing discontinuities (shocks) in

such a way that the discontinuities divide the multivalued regions with equal areas on either side of

them. This new F-function gives the overpressure signature at dl using Eqs. (A-5) and (A-6).

Cheung et al. [8] have used a three-dimensional parabolized Navier-Stokes (PNS) code in

combination with Whitham's quasilinear theory for sonic boom prediction. The CFD code used in

this study, UPS3D, solves the PNS equations governing the flow using an implicit, approximately

factored, finite volume algorithm [9]. The flow field associated with wing-body configurations is

evaluated and the drag, lift and moment coefficients are computed. Three different approaches

have been used by Cheung et al. to obtain the overpressure signal at mid- and far-fields from the

near-field CFD solution. One of these three approaches is based on the extrapolation technique

described above. In the present work, this extrapolation procedure is used in conjunction with the

UPS3D code, to evaluate the sonic boom pressure signatures.

Aircraft Configuration:

The developed optimization procedure is applied to two different aircraft configurations. The

first one, illustrated in Fig. 2, is a delta wing-body configuration and the second one, illustrated in

Fig. 3, is a doubly swept wing-body configuration. In both configurations, the centerbody is

axisymmetric and is a combination of a nose region and an extended cylindrical region. In the nose

region, the radius of the centerbody varies parabolically with the streamwise coordinate over the

nose length. The radius of the cylinder is denoted rm. In the nose region, the radius of the body

changes from zero (at the tip) to rm over a nose length, ln, as follows.

r = rm - rm*(1 - X/In) 2 (A-10)

Here x is the streamwise distance measured from the nose tip. For the first configuration

considered (Fig. 2), the wing planform is delta shaped with a leading edge sweep ?_, root chord Co

and wing span Ws. The wing cross section is a symmetric, diamond airfoil (Fig. 2) whose

maximum thickness-to-chord ratio is denoted tc. For the second configuration, the wing planform

is characterized by a double sweep with sweep angles Xl and X2 and a break length, Xb (Fig. 3).

The wing root chord is denoted Co and tip chord is denoted ct. The wing cross section is a

diamond airfoil with thickness-to-chord ratio, tc. For both configurations, the total body length is

denoted lb and the wing starting location is denoted Xw.
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For thedeltawing-bodyconfigurationcase,the leadingedgesweep(X),thewing root chord

(Co),thewing span(Ws),the airfoil thickness-to-chordratio (tc), the maximumnoseradius(rm)

and the nose length (In) are used as design variables. For the doubly swept wing-body

configurationcase,thetwo leadingedgesweeps()vl and),.2), the break length (Xb), the wing root

chord (Co), the wing tip chord (ct), the maximum nose radius (rm), the nose length (In) and the

wing starting location (Xw) are used as design variables.

Discrete Semi-analytical Sensitivity Analysis

In general, an aerodynamic performance coefficient, Cj, depends on the steady-state flow

variables, Q*, the vector of computational grid coordinates, X, and, sometimes, explicitly on the

vector of independent design variables, q_. Mathematically,

Cj = Cj(Q*(_), X(¢0, _) (A-11)

The derivative of Cj with respect to the ith design variable, _i, is given by,

d,, /aQ'//a,_j /_-//a_-,/+a*--_

InEqn.A-I:, theterms/ t, PcJ/ "dac'areeasilycalculated-knowingtheexplicit dependence
/aQ ! lax l a,,

of Cj on Q* X and _i. The term [aq*t, which represents the sensitivity of the steady state flow
' l a_i I

variables with respect to the i th design variable, is calculated using the direct differentiation

technique. In the discrete sensitivity approach, the discretized flow equations are directly

differentiated, as described here. The discretized flow equations which model the flow can be

written as follows.

{R(Q*(_), X(,), q_)} = {0} (A-13)

Equation A-13, differentiated with respect to 0i, gives

Equation A-14 represents a set of linear algebraic equations in bQ____*which can be solved easily. It is

t° be n°ted that the terms {a_ -"}' {a_-} and aR in Eqn" A- 14' can be calculated easily' kn°wingthea_,

explicit dependence of {R} on Q*, X and q5i. Rcferences 10 and 11 illustrate the use of the discrete

sensitivity analysis techniques for design optimization of high speed vehicle configurations to

obtain the configurations corresponding to minimum sonic boom and improved aerodynamic

performance.
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